THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Solution of Tutorial Classwork 5

1. Denote the quotient map by $\pi: X \to X/\sim$.

Note that $\pi^{-1}(\emptyset) = \emptyset \in \mathfrak{T}_X$ and $\pi^{-1}(X/\sim) = X \in \mathfrak{T}_X$. Hence $\emptyset \in \mathfrak{T}_{quot}$ and $X/\sim \in \mathfrak{T}_{quod}$.

Given an index set I and a collection of open sets $\{U_{\alpha}\}_{\alpha\in I}$ with $\pi^{-1}(U_{\alpha}) \in \mathfrak{T}_X$, we have $\pi^{-1}(\cup_{\alpha\in I}U_{\alpha}) = \bigcup_{\alpha\in I}\pi^{-1}(U_{\alpha})$. Since \mathfrak{T}_X is a topology, we have $\bigcup_{\alpha\in I}\pi^{-1}(U_{\alpha}) \in \mathfrak{T}_X$. Hence $\bigcup_{\alpha\in I}U_{\alpha}\in\mathfrak{T}_{quot}$.

Given a collection of open sets U_1, U_2, \ldots, U_n with $\pi^{-1}(U_i) \in \mathfrak{T}_X$, we have $\pi^{-1}(\bigcap_{i=1}^n U_i) = \bigcap_{i=1}^n \pi^{-1}(U_i)$. Since \mathfrak{T}_X is a topology, we have $\bigcap_{i=1}^n \pi^{-1}(U_i) \in \mathfrak{T}_X$. Hence $\bigcap_{i=1}^n U_i \in \mathfrak{T}_{quot}$.

As a result, \mathfrak{T}_{quot} is a topology.

(Counter example derived from lecture notes) Let X = ([-1,1]×{0})∪([-1,1]×{1}) with subsapce topology induced from R². Define the equivalent relation on X by identifying the points (x,0) with (x,1) for all x ≠ 0. Note that the resulting space X/ ~ is not Hausdorff. If we define another equivalent relation by further identifying the points (0,0) and (0,1), then the resulting space is just [-1,1] with standard topology. The resulting space is indeed Hausdorff.

(Tricky counter example) Consider the two points set $X = \{a, b\}$ with the indiscrete topology $\{\emptyset, \{a, b\}\}$. Clearly X is not Hausdorff. Define an equivalent relation by identifying a and b. Then we have $X/ \sim = \{[a]\}$ and $\mathfrak{T}_{quot} = \{\{[a]\}\}$. Clearly the resulting space is Hausdorff.

3. * Define a function $F: (X/\sim, \mathfrak{T}_{quot}) \to (\mathbb{R}, \mathfrak{T}_{std})$ by $F([x, y]) = y - x^2$. Since the value $y - x^2$ is constant on each equivalent classes, the function is well-defined.

For any $c \in \mathbb{R}$, we have F([0,c]) = c. Hence F is surjective. If $F([x_1, y_1]) = F([x_2, y_2])$, then $y_1 - x_1^2 = y_2 - x_2^2$. This implies that $[x_1, y_1] = [x_2, y_2]$. Hence F is injective.

Furthermore, pick any open set $U \subset \mathbb{R}$, we have $f^{-1}(U) \in \mathfrak{T}_{std}$. Hence $F^{-1}(U) = \pi(f^{-1}(U))$ is open. This shows that F is continuous.

Finally, pick any open set $V \subset X/\sim$ and consider $F(V) \subset \mathbb{R}$. Pick a point $[x_0, y_0] = [0, y_0 - x_0^2] \in V$ with $F([0, y_0 - x_0^2]) \in F(V)$. Since $V \subset X/\sim$ is open, $\pi^{-1}(V) \subset \mathbb{R}^2$ is open. In particular, there exists $\epsilon > 0$ such that $(0, t) \in V$ for all t with $|t - (y_0 - x_0^2)| < \epsilon$. This implies that $t \in F(V)$ for all $|t - (y_0 - x_0^2)| < \epsilon$. This implies that $t \in F(V)$ for all $|t - (y_0 - x_0^2)| < \epsilon$. Hence F maps open set to open set (or in other word, F^{-1} is continuous).

As a result, F is a homeomorphism.